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ABSTRACT 

Shock tube experiments have been performed to quantitatively deter  - 
mine the interaction of a hypersonic flow with the magnetic field of a s t ra ight  

current-carrying wi re  oriented perpendicular to the flow direction. 

teraction which takes place in a thin layer  behind a detached shock wave i s  

subject to the following restr ic t ions:  

the shock; ( 2 )  Low magnetic Reynolds number and(3)  s ca l a r  conductivity in the 

shock layer .  

analyzed theoretically by Levy and Petschek. The analysis,  which is briefly 

reviewed, predicts the location of a thin shock layer  which is concentric with 

the wire .  

The in- 

(1) Negligible conductivity ups t ream of 

The s t ra ight  w i re  geometry under these restr ic t ions has  been 

Most of the experimental  work was per formed in a 50-50 mixture  of 

argon and oxygen, at an initial p r e s s u r e  of 1 mm Hg, and in a range of shock 

velocit ies between 4. 3 and 6 mm/p,sec. 

the flow luminosity, using an image converter and m i r r o r  camera  looking 

both perpendicular to and along the wire .  

to stand up to 5-1/2 c m  in front of a 1 c m  radius cylinder producing the mag-  

netic field. 

with theory in spite of the fact that a t  a density ra t io  a c r o s s  the shock of 0. 25, 

the theory was not expected to predict  the shock position to accuracies  better 

Data have been obtained by observing 

A c i rcu lar  shock front was observed 

The data on shock position vs cur ren t  were  in excellent agreement  

than a factor of two. 
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SECTION I 

INTRODUCTION 

Since the ear l ies t  days of hypersonic atmospheric flight, speculations 
have been made about the useful application of magnetohydr odynamic pr inci-  
ples to this regime.  The obvious combination of the thermally ionized gases  
surrounding a vehicle in this environment, and strong magnetic fields,  offers 
the at t ract ive possibility of producing significant forces  and other alterations 
of the natural  flow about a vehicle without intimate contact between a solid 
surface and the hot gas ,  with the attendant reduction of heating. The f i r s t  
at tempts a t  making this combination were  thwarted by the realization that in 
general  the energy t ransfer  reduction to the vehicle was m o r e  than balanced 
by the joule dissipation in the field coils required to produce the MHD in ter -  
action. 
to alleviate this res t r ic t ion and have created a new in te res t  in flight applica- 
tions of MHD. 

Recent advances in the a rea  of superconducting field coils promise  

Some of the MHD interactions of interest  to this flight reg ime a r e  in  
a reg ime which has not received the low magnetic Reynolds number region: 

too much attention in the l i terature ,  par t icular ly  f r o m  the experimental  point 
of view. The recent  theoretical  analysis of Levy and Petschekz of the two- 
dimensional hypersonic flow of a partially ionized gas over a straight cu r ren t -  
carrying conductor provided a chance for a quantative comparison of an ex- 
per imental  investigation of a flow of in terest  to the flight MHD problem with 
theory. 
tion. 

The present  paper reports  the details of this experimental  investiga- 

A number of previous experiments have been repor ted  which bear  on 
this problem. The ear l ies t  experimental verification of a low magnetic Rey- 
nolds number,  MHD flow phenomena was the choking of a one-dimensional 
flow in an annular nozzle, supplied by a combustion driven shock tube, by 
Pa t r i ck  and Brogan. 3 This experiment still remains  a s  one of the few quan- 
titative works in this field a s  they were  able to predict  the location of normal  
shocks in their  nozzle f rom one-dimensional MHD channel flow considerations. 

The possibility of producing lift with magnetic fields was the subject 
of a semi-quantitative two-dimensional experiment. 
cu r ren t  was passed  through a helix which had i ts  axis perpendicular to the 
€low direction. The value of the magnetic field was made  la rge  enough to 
cause the Hall parameter  to be unity. This caused the gas cur ren ts  to have 
a component paral le l  t o  the flow direction, result ing in a lift force on the 
helix. The experimental  data clearly showed a flow asymmetry ,  indicative 
of a lift force at  conditions where a l inear theory developed by Kemp and 
Petschek5 had indicated that lift-drag ratios of order  unity were  possible. 

Fo r  these experiments ,  



The f i r s t  attempt to produce a quantitative body MHD flow interaction 
was made by Ziemer.  6 With a coil built into the nose of a hemispherical  
model,  he attempted to reproduce the effect predicted by Bush. 7 Bush, a s  
well  a s  Kemp, 8 Neuringer9 and LykoudislO al l  predicted an effect on the s t a g -  
nation point p re s su re  and velocity gradient due to magnetic fields fo r  smal l  
values of interaction parameter .  Bush extended this analysis to l a rge r  values 
of interaction parameter ,  and found that with increasing value of this pa ram-  
e t e r  the shock stand-off distance also had to increase.  This r e su l t  was ver i -  
fied by Z iemer ,  but the quantative aspects of this work must  be t rea ted  with 
suspicion. Ziemer used a magnetically-driven shock tube, s imi la r  to the type 
developed by Josephson. l 1  In this general  type of device, the existence of a 
homogeneous hot gas sample of known and calculable propert ies  in the absence 
of an initial bias field has not been established. In fact ,  considerable evidence 
exists that this end has  not been achieved in these devices. ClopeaulZ showed 
that the dr iver  gases and t e s t  gas were  indistinguishable. Keck 1 3  and Pughl4  
showed that the front in this type of device can be nonplane, curved, and even 
highly turbulent and that a c lear  separation of the driving mechanism f rom 
the tes t  gas has  not been achieved. 
has severe  attenuation of shock velocity with distance and consequently in- 
homogeneous gas conditions. A l s o  his data on t e s t  t ime a r e  not consistent 
with the continuity considerations. Thus, his quantitative analysis and com- 
par ison with the Bush theory must  be regarded a s  suspect.  

In addition, Z iemer ' s  conical shock tube 

Two other re la ted experiments should be mentioned. E r i c son l5  a t -  
tempted to produce an MHD interaction in a shock tunnel flow. 
ber  of runs which did not produce the expected interaction, one or severa l  
isolated experiments showed an effect. I t  was concluded that the ionization 
kinetics of the nozzle flow, a s  well  a s  the bow shock, w e r e  not expected to 
be sufficiently fast in the nozzle to produce equilibrium o r  otherwise predict-  
able conditions f o r  this experiment. 

After a num- 

The final investigation to be mentioned i s  the work of Bostick. 16 
Bostick uses  a plasma source to shoot a slug of p lasma,  a plasmoid, against  
a magnetic field produced by a wi re  normal  to the plasma flow direction. In 
this experiment,  the plasma conductivity i s  essentially infinite but otherwise 
the plasma properties a r e  not too well  known. 
generally agreed with the infinite conductivity calculations of Hurley. 

The resu l t s  of this experiment 

The present work i s  an attempt to reproduce the simple two-dimensional 
geometry analyzed by Levy and Petschek in an experiment which can be com- 
pared  quantitatively with the theory. The interaction between the flow and the 
magnetic field, behind a shock wave standing ahead of the conductor, is  in-  
vestigated under the following restr ic t ions:  

1)  The free s t r eam is essentially non-conducting, charac te r i s t ic  
of the flight situation. 

2)  The shock layer  conductivity i s  low (low magnetic Reynolds 
number). 

Scalar conductivity in the shock layer  (Hall parameter  smal l ) .  3) 

- L -  



Emphasis was placed on the ability to achieve quantitative resu l t s ;  
thus a facility in which the existence of a homogeneous g a s  sample with ca l -  
culable gas properties was the p r ime  requisite.  
heated dr iver  shock tubel8 fitted this requirement  while producing the r eq -  
uisite gas  propert ies  in a i r .  
could have been performed in combustion-driver shock tubes , but for sim- 
plicity w e r e  also performed in the a rc -d r ive r  facility. 
ments  w e r e  taken and sufficient experience exists with this facility that the 
propert ies  and thermodynamic s ta te  of the t e s t  gas was known with some con- 
fidence. Thus , the observed flow interaction geometry could be connected 
to the theory in a quantitative manner .  Probably the most  se r ious  uncertainty 
in this comparison i s  that  the theory a s sumes  a la rge  density increase  a c r o s s  
the shock while in the experiments the density inc rease  was  only moderate.  

The six-inch diameter  a r c -  

Later  experiments with oxygen-argon mixtures  

Sufficient measu re -  

In the next section, the theory of Levy and Petschek is reviewed 
briefly. 
and the experiment can be considered quasi-steady a t  best ,  the modifications 
of the theory required to apply it to the experimental  situation a r e  outlined in 
Section 111. The experimental  equipment and techniques used, followed by a 
presentation and discussion of the resu l t s ,  a r e  presented in Sections IV and 
V. 
theory and Section VI1 re i te ra tes  the major  conclusions drawn f rom this ex- 
perimental  study. 

Because the theory is a steady s ta te  description of the phenomenon 

Section VI discusses  the quantitative comparison with the Levy-Petschek 

L -  
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SECTION I1 

REVIEW OF THEORY 

A theoretical  investigation of the MHD flow applicable to the p re sen t  
experiments  has  been per formed by Levy and Petschek.  
will ve ry  briefly review the approach used, and the conclusions reached  in 
that theory. 
F i g .  1. The analysis was performed for the following conditions: (1) The 
f r ee  s t r e a m  is nonconducting, (2)  The magnetic field has a s t rong effect on 
the flow, i. e. , a l a rge  interact ion pa rame te r ,  ( 3 )  The applied magnetic field 
is produced by an infinitely long cur ren t -car ry ing  w i r e  or iented perpendicular 
to  the flow, and its field is not affected by the gas cur ren ts ,  (4) The gas  con- 
ductivity is a sca la r  quantity. 

In this section, we 

The flow geometry analyzed is represented  schematical ly  in 

In the analysis,  the presence of a shock wave was assumed.  An anal-  
ysis  was then made to determine the location of this shock, and the flow field 
behind it. The change in magnetic field a c r o s s  the shock wave is small ,  s o  
that the thermodynamic proper t ies  of the gas immediately behind the shock 
a r e  descr ibed  by the hydrodynamic shock equations. Hence, the interact ion 
of the magnetic field with the flow in the vicinity of the stagnation s t r eaml ine  
takes  place in  the region of subsonic flow behind a normal  shock. 
which a s imple continuity analysis  wi l l  show to be thin, is called the shock 
layer  i n  Fig.  1. 
fo rce  integrated a c r o s s  the layer  be equal to the p r e s s u r e  behind the shock, 
o r  for hypersonic flow, the f r e e  s t r e a m  dynamic p res su re .  

This region, 

Momentum balance in  this region requi res  that the magnetic 

Thus roughly, 

The subscr ip t  s r e fe r s  to conditions in the shock layer ,  and a, r e f e r s  
to  the f r e e  s t r e a m  conditions in  front of the shock; js i s  the c u r r e n t  density, 
B (ro) is the magnetic field a t  the shock, which is located a dis tance ro f rom 
the wi re ;  6 the thickness of the layer ,  p,  and U, the f r ee  s t r e a m  density and 
velocity, respectively.  The cur ren t  density can be calculated f r o m  Ohm's 
law which, for small Hall  pa rame te r s ,  may be wr i t ten  in t e r m s  of the gas 
conductivity os as:  

where  us is the velocity behind the normal  shock, which is equal to E U, and 
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E is the ra t io  of the f r e e  s t r e a m  density t o  the density immediately behind the 
shock. Hence, Eq. (1) becomes 

2 2 
P, u, (5 S E U m B  (ro) 6 

In order  to determine the thickness of the shock layer ,  6 ,  it is neces -  
s a r y  to take into account the curvature  of the shock. 
angle of .so- measured  f rom the stagnation s t reaml ine ,  and u and v be the 
rad ia l  and azimuthal components of velocity. 
tion, we  know 

Let  $ be the inclination 

F r o m  the oblique shock r e l a -  

u = - E u o o c o s  4 
S 

V 
S 

Urn s in  C#I 

The mass flow entering a section of the shock layer  which subtends an  angle 
of 4 along the shock is p, Urn ro  sin 4. This mus t  equal the mass flow leav-  
ing in an azimuthal direction: p s  vs 6. Equating these  m a s s  flow ra t e s  and 
using the relation given above for vs , we find that 

6 = E r 0  (3)  

We now express  the magnetic field B in t e r m s  of the distance ro  f rom 
the w i r e  

where  po is the permeabi l i ty  of f r e e  space ,  and I is the w i r e  current .  
stituting Eq. (4) and Eq. ( 3 )  into Eq. (2), and solving for r o ,  w e  find 

Sub- 

In this simple derivation, all quantities in the shock layer  w e r e  de-  
sc r ibed  in t e rms  of an average  value, and it was  assumed that (1) the center  
of curva ture  of the shock was  a t  the wire ,  and (2)  the forces  in the azimuthal 
direction do not change the tangential velocity f r o m  its value jus t  behind the 
shock. The more  accura te  analysis  made by Levy and Pe tschek  considered 
the flow in the stagnation region, including var ia t ions in  flow p rope r t i e s  in 
the shock layer  and the effects  of t r ansve r se  p r e s s u r e  gradients .  They 

- 6 -  



t 

concluded that the shock follows magnetic f ie ld  l ines to the o r d e r  of E .  
m o r e  accurate expressions f o r  shock position and density profile f rom Ref. ( 1 )  
a r e  as follows: 

The 

2 2 

( 6 )  
3 E o  

Shock position: r = 

where 

and 

r - r  
0 d x  Density Prof i le :  (7) 

These expressions were  derived under the assumption of 
As i n  the case of predicting the aerodynamic shock detachment distance,  
however, the analysis i s  expected to become l e s s  accurate  fo r  density ra t ios  
c loser  to unity. 

< 1. 
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SECTION I11 

APPLICATION O F  THEORY TO SHOCK TUBE EXPERIMENT 

The experimental  study w a s  ca r r i ed  out in a shock tube. The theore t -  
i ca l  calculations must  be modified to apply them to the conditions under which 
the experiment was performed,  which includes the effects of a non-steady 
magnetic field. Calculations of the instantaneous shock position as a function 
of t i m e  a r e  made based on a quasi-steady s ta te  theory. 

The magnetic field for the experiments was  produced by cu r ren t  gen- 
e ra ted  by the discharge of a capacitor bank through a rod which was inser ted  
a c r o s s  the diameter  of the shock tube. 
incident shock, and the contact interface is the gas  in  which the experiment 
was  performed.  
f rom the normal  shock relations for a moving shock, in t e r m s  of the shock 
speed, Us and initial shock tube p res su re ,  pi. 

The region of tes t  gas between the 

The proper t ies  of this "free s t r eam"  gas can be calculated 

A s  soon as the incident shock passes  the wire ,  an aerodynamically 
supported shock must  fo rm around the wire .  
the region in which the interact ion with the magnetic field first takes place. 
The gas  conditions in  this shock layer  near  the stagnation s t reaml ine  a r e  
calculable by using the normal  shock relation for a s ta t ionary shock. 
conductivity os in the shock layer  is calculated f rom the relation: 

The region behind this shock is 

The 

-1 
Where 7, = [ C e  

ionized mixture ,  ne is the electron number density, e the charge  on the elec-  
tron, me the electron m a s s ,  re the mean the rma l  e lec t ron  velocity, and nj 
identifies the number density of the j t h  species ,  which has  a c r o s s  section 
for  momentum transfer  with electrons of magnitude Qj. 
c r o s s  section for the gases  used in our experiments have been taken f rom the 
l i terature .  l 9  The equilibrium values of tempera ture  and species  number 
densit ies a r e  calculated f r o m  the Saha equation in  the usual  way. Calculations 
of the r a t e  p rocesses ,  a s  well  a s  experimental data to be discussed la te r ,  in-  
dicate  that the gas comes into thermodynamic equilibrium very  quickly, jus t i -  
fying the use  of the Saha equation. 

n .  a- i s  the mean f r ee  t ime of the electron in  the j J J ]  

The values of the 

The restr ic t ion that the f ree  s t r e a m  conductivity be sma l l  places an  
If the f r ee  s t r e a m  con- upper l imit  on the allowed incident shock velocity. 

ductivity is not significant, the p re s su re  exerted by the magnetic field on 
the shock layer  is la rge  compared to that exer ted in the f r e e  s t r eam.  

-9-  



Thus, small upstream conductivity implies that: 

2 2 
0 " f o b -  j x B  N . d r < E  - ( J ~ U ~ B ~  r 

r 
0 

Expressing j in  the region between the shock position and infinity a s  
N 

(Jmuob g r )  
j =  we find that the limitation on upstream conductivity is 2 l t ( w  7 )  
N 

e 

\ w , T ~  1 J 
ob 

where  we is the electron cyclotron frequency. 

The restr ic t ion to sma l l  Hall coefficients places a lower l imit  on the 
allowed incident shock velocity. It was concluded by Levy and Petschek that 
the Hall parameter  may  be a s  la rge  a s  1 / ~  due to the fact that a thin shock 
layer  inhibits the flow of the Hall currents .  
s t r ic t ions will be indicated quantitatively on future graphs.  

Both of the shock velocity r e -  

Initially the flow geometry in the shock tube experiment is unsteady 
because the interaction pa rame te r s  i s  l a rge r  than unity a t  the aerodynamically 
supported shock position. 
s t r e a m  until it reaches a position where Eq. (6)  is satisfied. 
quired for this to  happen, i. e. the setup t ime for steady flow geometry should 
be shor te r  than both the t e s t  t ime and the charac te r i s t ic  quarter  cycle t ime of 
the capacitor bank. An est imate  of this time m a y  be made  by applying the 
momentum equation to the shock layer  in a manner  very s imi la r  to that ex- 
plained in Section 11, except that in  the present  ca se  the shock layer  is not 
considered to be stationary,  but moving with a velocity drs/dt  toward i ts  
steady s ta te  position ro. Following the corresponding aerodynamic situation, 
i t  will  be assumed that drs/dt  is smal l  compared with U,, and can be ignored 
compared with it. 
performed,  os varied only a s  T3T2. Hence, we m a y  to a fair  degree of accu r -  
acy, assume that cS is  independent of drs/dt .  
the shock is EU, relative to the shock, the cur ren t  in the shock layer  may  be 
wri t ten as::: 

A s  a resul t ,  the shock layer  will  be pushed up- 
The t ime r e -  

In the shock v locity range for which the experiments were  

Since the flow velocity behind 

where  B( r  ) = p 0 1 / 2 n r s .  
S 

aB The electr ic  field associated with - a t  

since for the quarter  cycle t imes used i t  is  generally small .  

.b -0 

has been neglected in this equation 

-10- 



In this equation, Urn is  positive in  the downstream direction, while r s  is  
taken to  be positive in the upstream direction. 

Generalizing Eq. ( 3 )  to 6 = E r and using the above expression for 
S cur ren t  Eq. (1) may be writ ten a s  

This equation can be simplified by defining 
2 

ro ( t )  = ( 9 )  

which can be interpreted a s  the shock location which would correspond to a 
steady cur ren t  whose magnitude was equal to the instantaneous current .  
Equation (8) now becomes 

If a cur ren t  is impulsively applied a t  some initial t ime,  and remains  
constant thereaf ter ,  Eq. (1  0) indicates that the shock position approaches the 
steady s ta te  shock position given by Eq. (9 )  exponentially with an e-folding 
time 7 = r /cum. 
tions l is ted ea r l i e r  in Section 11, so that the steady s ta te  position given by 
Eq. ( S ) ,  and the e-folding t ime a re  not quite cor rec t ,  'While a co r rec t  quasi-  
steady analysis taking the ent i re  flow field into account would be very  difficult, 
the accuracy of Eq. (10) is  improved i f  w e  use  the m o r e  p rec i se  definition of 
ro for  the steady s ta te  case  f rom Eq. (6)(with the modification that I is taken 
a s  a function of t ime).  F o r  a l l  of the la te r  calculations, therefore ,  we have 
used  Eq. (10) with ro  defined by Eq. (6). 

This analysis,  however, i-s based on the simplifying assump-  
0 

In our experiments,  the current  was generated by the sinusoidal 
discharge of a capacitor bank. Thus, Eq. (6)  becomes 

Defining the character is t ic  t ime T = roo/EU,, Eq. (10) becomes 

dt T 

-11-  



This equation may  be solved for r s  as a function of t ime for given 
values of o, 7, roo, and initial conditions of r s .  

On the basis of the preceding considerations, calculations were  made  
for a i r  a t  0. 25 mm initial p re s su re ,  and a 50% argon - 50% oxygen mixture ,  
at 1 mm initial p ressure .  Figure 2 shows plots of ro vs U s  calculated from 
Eq. (6) for several  values of cur ren t  for these two t e s t  gases .  The l imits on 
shock velocity imposed by the Hall parameter  and the ups t ream conductivity 
a r e  indicated. a t  U s  = 8 x l o 3  mm/psec  and p i  = 0.25mm,  E = 1/7 
and for ro  = 2 cm, (which requires  a cur ren t  of 2. 7 x Id amps) ,  the cha r -  
ac te r i s t ic  flow time, 7, i s  17 .  5 p s e c .  This i s  about equal to the average tes t  
t ime achievable in the shock tube used, and was found to be insufficient tes t  
t ime to per form easily interpretable experiments.  The corresponding condi- 
tions for the argon-oxygen mixture  a t  pi = 1 mm, Us = 5 x 103 mm/psec  and 
ro = 5 c m  are :  E = 1/4, I = 4 x 10 amp, and T =  40Psec  with a tes t  t ime of 
about 90 Psec .  

For  a i r ,  

5 

A few runs were  made in a i r .  Their main value to this experiment is 
that photographs showing the two-dimensional charac te r  of the flow w e r e  taken. 
A l s o ,  since the density ra t io ,  E ,  for a i r  i s  smal le r  than for the argon-oxygen 
mixture ,  thinner shock layers  will be expected in a i r .  
one of these runs w i l l  be presented in the next section. 
on shock position were  obtained from these runs.  

The detailed resu l t s  of 
N o  quantitative data 

Our attention will  be focused on the experiments performed in the 
argon-oxygen mixture because tes t  t imes m o r e  than twice a s  long a s  the 
charac te r i s t ic  time for steady flow a r e  available. 
the capacitor bank had a quarter  cycle t ime of 90Psec ,  which resul ted in an 
electr ic  field due to dB/dt that has a maximum value l e s s  than a quarter  of 
the maximum value of eUooB. Since these maximums a r e  90° out of phase 
the effects of this spurious electr ic  field can be ignored. 
Eq. (12), the quasi-steady theoretical  shock position (rs)  may  be calculated 
a s  a function of time. The initial conditions a r e  determined in the following 
way: When the incident shock a r r i v e s  a t  the wi re ,  rs  - r c ,  the radius of the 
cylinder containing the s t ra ight  wi re .  (The geometry of this cylinder will be 
discussed la te r .  ) Defining the t ime between the firing of the capacitor bank, 
and the a r r i v a l  of the incident shock waves a s  A t ,  Eq. (12) has  the initial con- 
dition that rs  = rc  a t  t = At. Figure 3 i s  a plot of the solution to this equation 
for At = 20, 40, 60, 80, 100, 120 p s e c ; 7 =  40 p s e c ;  a =  2 x l o 4  rad/,,,sec and 
roo = 5 cm,  which is the steady s ta te  position result ing f rom Eq. (6)  when 
U s  = 5 m m / p s e c ,  pi = 1 m m ,  a n d 1  = 4 x 105 amps.  

Fo r  these experiments,  

Through the use  of 

- 

Also shown in Fig .  3 i s  a plot of equivalent steady s ta te  shock position 
ro  [ Eq. ( l l ) ]  as a function of t ime fo r  a sinusoidally varying cu r ren t  of the 
same  frequency. F r o m  Eq. (10) we may  note that the maximum shock posi-  
tion, drs /dt  = 0,  occurs at  rs  = ro.  
is given by the steady s ta te  theory [ Eq. (6)] evaluated a t  the instantaneous 

Thus a t  this maximum,  the shock location 

I cur ren t  which is flowing. 
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SECTION IV 

EXPERIMENTAL EQUIPMENT 

The experiments were  performed in a shock tube with a d r ive r  i n  
which helium is joule-heated by the rapid discharge of e lec t r ica l  energy. 
This device is thoroughly described in  Ref. 18. Here ,  only a brief de-  
scription will be given in order  to  demonstrate that the device is capable of 
producing a uniform t e s t  gas. 

The tube consists of a driver section of 1. 5-in. diameter  of variable 
lenghts up to 1 f t .  A diaphragm designed to b u r s t  a t  about 10, 000 ps i  is lo- 
cated a t  the end of this dr iver  section. The d r ive r  is  coupled to the r e s t  of 
the shock tube through a conical transit ion section, about 1 f t  in  length, in 
which the diameter  changes linearly f r o m  the 1. 5-in. to 6-in. 
ing pa r t  of the shock tube consists of 30 f t  of 6-in. pipe, the first 20  f t  be-  
ing aluminum and the l a s t  10 f t  Pyrex glass.  
following the tes t  section terminates the device. 

The remain-  

A conventional dump tank 

Shock velocities and attenuation his tor ies  have been obtained over  
the ent i re  length of the tube through the use of collimated photomultiplier 
and thin film heat t ransfer  gauges mounted in  the side wall. 
shock velocities calculated f r o m  driver  energy density considerations a r e  
i n  excess  of the measured  velocities by about 3070. This discrepancy has  
been attributed to energy t ransfer  inefficiencies, ionization and radiation 
lo s ses ,  and shock attenuation. 18 

The values of 

Theoretical  calculations have been made on the loss  of ideal  t e s t  
time due to m a s s  flow in the boundary l aye r ,  based on the work of Roshko20 
and Mire ls .  21 Other effects, such a s  turbulent mixing, and Taylor insta-  
bil i t ies,  in fact ,  l imit  the t e s t  time to about half of this value. A number 
of diagnostic techniques have been used to experimentally determine the 
existence and duration of the tes t  gas. These include m i r r o r  c a m e r a  and 
image converter photographs, time resolved race t rack  spec t rograms,  and 
photomultiplie r t r aces .  
ve r t e r  photographs showing the shock front,  t es t  gas ,  and contact interface,  
a s  well  a s  a photomultiplier t r ace  as  the same shock front. 
obtained in a i r  at an initial p re s su re  of . 25 mm and a shock velocity of 
8. 8 mm/psec .  
t r aces ,  the radiation overshoot character is t ics  of shock heated a i r  is ob- 
served,  a s  well a s  the region of relatively constant but l e s s  intense radiation 
following the luminous front. 
follows this equilibrium zone and is separated f rom i t  by the contact inter-  
face. The gases  in this region a r e  mostly dr iver  gases  and contaminants 
ablated f rom the dr iver  wall. 

Figure 4 contains three instantaneous image con- 

These  data w e r e  

In both the image converter pictures and photomultiplier 

An i r regular  region of very intense radiation 
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This same type of photomultiplier data has  been obtained in 50-50 
mixtures  of oxygen and argon a t  an initial p re s su re  of 1 m m  Hg. and sev -  
e r a l  shock velocities, a s  indicated in F i g .  5. The photomultiplier osci l -  
lograms fo r  the higher velocity case  show a sha rp  r i se  when the shock 
a r r i v e s  then a period of approximately 70 1-1 sec  of uniform radiation f rom 
the tes t  gas ,  and another sha rp  r i se  a t  the contact interface.  
higher velocities, a radiation overshoot a t  the shock, s imi l a r  to the air 
situation, was observed. As the velocity was decreased,  the radiation f rom 
the tes t  gas in the visible par t  of the spectrum decreased very sharply.  This 
i s  due to a different radiation mechanism a t  the lower velocities. At the 
high velocity, all  of the oxygen i s  dissociated,  and a few percent  of the oxy- 
gen atoms have been ionized. 
strahlung. At the lower velocit ies,  however, there a r e  s t i l l  a significant 
number of oxygen molecules (570) and there  a r e  a lmost  no electrons (. 00170). 
Hence, the Bremsstrahlung radiation i s  a lmost  completely absent,  and a l l  
that is observed i s  the molecular radiation f rom oxygen (Schumman-Runge). 
This  lower level radiation is observed in the second oscil logram on Fig. 5,  
showing the results of a run a t  4. 7 mm/ p sec.  
two t r aces  a t  different sensit ivit ies of a single photomultiplier. The upper 
t r ace ,  a t  the higher sensitivity, shows the a r r i v a l  of the incident shock, 
followed by a continually increasing radiation level. The lower t race ,  a t  a 
sensitivity comparable to that for  the higher velocity run, shows the lumin- 
osity increasing a s  the interface i s  approached, finally reaching a value 
comparable to the dr iver  gas radiation level. The continual r i s e  in radia-  
tion through the tes t  gas is  attr ibuted to the smal l ,  but finite shock f ront  
velocity attenuation. Thus,  the g a s  in the back of the t e s t  slug, which has  
a higher radiation level, was heated by a s t ronger  shock than was the gas 
immediately behind the shock. 
that in the length of tube required to generate 100 /A sec  of t e s t  gas ,  the 
incident shock has been attenuated by about 10%. 
between shock velocities for  the two runs shown in  Fig.  5 (b)  is on this o rde r ,  
i t  is  not unreasonable to expect the t e s t  gas radiation a t  the lower velocity 
to change a s  indicated. 
locities between these two l imits .  

At slightly 

As a resul t ,  the dominant radiation is B r e m s -  

The oscil logram contains 

Measurements  of shock attenuation indicate 

Noting that the difference 

Most of the experimental  runs were  made a t  ve-  

In spite of the fact  that the sma l l  change in init ial  shock velocity due 
to shock attenuation causes  very la rge  changes in the radiated light f rom the 
tes t  gas ,  the values of density, temperature ,  conductivity, etc. behind a 
standing shock formed in this tes t  gas a r e  ve ry  insensitive to these sma l l  
velocity changes. 

As indicated e a r l i e r ,  the magnetic field within the shock tube was 

A high p res su re  lovatron switch was connected on the hot side 
produced by discharge of a 103 p f  bank of energy s torage capaci tors  rated 
a t  10KV.  
of the capacitor bank. 
to r  bank large compared with the e-folding t ime,  a s  discussed e a r l i e r ,  i t  
was necessary  to  have a highly inductive load. 
plished by inserting four s t ra ight  wi res  a c r o s s  the shock tube ra ther  than a 
single wire  as  originally used in the a i r  experiments .  The four  wi re s  were  
close to each other compared with the shock detachment distance,  so  that 

In o rde r  to have the quarter-cycle  time of the capaci-  

This was partially accom- 
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the magnetic field a t  the shock position produced by cur ren ts  flowing i n  the 
same direction in each wire  were  very close to the f ie ld  produced by a 
single s t ra ight  wire .  
additional inductance s o  that a quarter cycle time of about 90 p s e c  was 
achieved. 
ge ome t r y  . 

The external  connections were  designed to provide 

This was a little more  than twice the e-folding t ime of the flow 

The general  arrangement  of this four wire  assembly,  installed in 
a model of the tes t  section, i s  shown in  F i g .  7 .  
clad f iberglass  rod was used a s  a core for  that p a r t  of the four wire  as -  
sembly placed inside the shock tube. 
mined by the extremely large compressive s t r e s s e s  placed on the core .  
Unclad plast ics ,  such a s  teflon, nylon, and even nylon phenolic, quickly 
disintegrated under the load. F o u r  slots equally spaced around the rod, and 
paral le l  with the rod ax is ,  were provided to position the conductors. In 
o rde r  to provide insulation between conductors in the low p res su re  environ- 
ment of the shock tube, a 1/8-in. thick layer  of f iberglass  saturated with 
epoxy r e s in  was wound around the assembly. 
e t e r  of the cylinder to one inch. 

A 3/4-in. diameter  epoxy 

The choice of this ma te r i a l  was de t e r -  

This  brought the finished diam- 

Measurements  of shock velocity, a s  well  a s  oscilloscope and capaci-  
t o r  bank triggering were  accomplished through the use of a s e r i e s  of 4 thin 
film hea t  t ransfer  gauges located 50 c m  apa r t  upstream of the wire  assembly.  
The choice of heat t r ans fe r  gauges rather  than photomultiplication was based 
on the extreme sensitivity of t e s t  gas radiation intensity to initial shock ve-  
locity, a s  discussed ea r l i e r .  The output of the gauge located fur thest  up- 
s t r e a m  of the experiment  was used to t r igger  the oscil loscopes,  the capacitor 
bank (through a delay) and some photographic equipment. Arrangement of 
experimental  equipment is indicated in Fig.  The output of the three 
gauges downstream was monitored on dual b e a m  oscil loscopes in  o r d e r  to 
measu re  shock velocity. Also displayed on an oscilloscope was the output 
of a Rogowski coil used to measure  the cur ren t  flowing through the wire  
in  the experiment.  

6. 

F o r  the majori ty  of the runs, the m i r r o r  camera  was the only quan- 
titative diagnostic measurement  of flow geometry. 
wire  cylinder assembly was inserted a c r o s s  the diameter  of the t e s t  s e c -  
tion para l le l  with the test section windows. 
with its axis perpendicular to both the flow direction and the cylinder. A 
viewing s l i t  1 m m  wide was placed in the center  of the tes t  section window, 
and res t r ic ted  the field of view of the m i r r o r  c a m e r a  to a region 5-1/2 c m  
ups t ream and 2 c m  downstream of the center  of the cylinder. 
m i r r o r  of the camera  was spun at  about 6 x l o 4  rpm,  giving writing speeds 
of the o r d e r  of . 04 m m / p s e c  on the film. 

F o r  these runs,  the 4-  

The m i r r o r  camera  was  aligned 

The hexagonal 

F o r  most  runs,  a spark  plug, located i n  the f ie ld  of view of the m i r r o r  
camera ,  was f i red  a t  the time the capacitor bank f i red .  In this way, an in- 
dependent check on the timing could be obtained. 

-15- 



The l a s t  few runs were  made with the cylinder inser ted  through the 
t e s t  section windows, a s  shown in  F i g .  7 . F o r  these runs,  an  STL image 
converter  camera ,  which was capable of taking three  photographs at 8 1-1 sec  
intervals  with 0. 11-1 sec  exposure t imes,  was aligned along the axis  of the 
cylinder.  Its field of view was a square 10 c m  on a s ide-centered around 
the cylinder. A circle 8 cm i n  diameter  and a line para l le l  to the stagna- 
tion s t reamline were marked on the viewing window for  reference.  
m i r r o r  camera  was located on the opposite side of the t e s t  section and 
viewed the flow through a s l i t  paral le l  to the stagnation s t reamline and ex-  
tending upstream 5 cm,  aligned in the same manner.  

The 
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SECTION V 

EXPERIMENTAL RESULTS 

A total  of approximately 20 successful runs was made in the 50-50 
mixture of argon and oxygen. F o r  all of these runs ,  the init ial  shock tube 
p r e s s u r e  was 1 mm Hg, and the range of shock velocities was between 4. 3 
and 6 mm/psec. 
ren ts  of 4 x 105 amps, result ing in a magnetic field of about 2 webers/m2 a t  
the steady state shock position, and magnetic Reynolds numbers  l e s s  than 0. 1. 
Some typical photographic resul ts  at cur ren ts  of 4 x l o 5  amps  a r e  shown in 
Figs.  8,  9 ,  10, and 11. F o r  the runs shown in  F igs .  8 and 9,  only the m i r r o r  
c a m e r a  with i t s  axis perpendicular to the flow and the cylinder was used. 
Both m i r r o r  camera  and image converter resu l t s  a r e  shown in  the la t te r  
two f igures ,  for which the c a m e r a s  were aligned along the cylinder axis .  
To facilitate the understanding of the m i r r o r  c a m e r a  photographs in  all the 
f igures ,  x-t diagrams have been constructed to the left of the photographs 
on the bas i s  of the velocity data obtained f r o m  the heat t r ans fe r  gauges. 
some of the runs,  the m i r r o r  camera  slit was not aligned exactly para l le l  to 
the flow direction, with the resu l t  that the light s t reaks  a t  the interface on 
the photograph a r e  not paral le l  with the interface marked  on the x-t  diagram. 
F o r  the runs in  which a spark plug was  used to mark  the m i r r o r  c a m e r a  a t  
the t ime the bank f i red ,  such a s  F i g .  9, an  independent check on tne oscil lo- 
g r a m  timing data could be made. 
r ival  t ime could be predicted within approximately S p e c .  

Most of the runs were made a t  effective straight wire  c u r -  

F o r  

These checks indicated that the shock ar-  

When operating in the 50-50 argon-oxygen gas  mixtures  a t  velocities 
below 5. 1 mm/psec the difference in light intensity between the f r ee  s t r e a m  
(Schumann-Runge radiation) and the gas  behind the standing shock (B r e m s s t r a h -  
lung radiation) was so grea t  that in order  to prevent the radiation f r o m  the stand- 
ing shock f rom overexposing the film, the camera  had to be closed down to the 
point where the radiation f rom f ree  s t r e a m  g a s  did not expose the film. How- 
eve r ,  this presented no problem since a visible standing shock appeared a s  
soon a s  the incident shock a r r ived  at the cylinder. 
photographs, i t  i s  seen that a standing shock moves out f r o m  the cylinder, 
in  general  accordance with the theoretical prediction (solid white l ine) taken 
f r o m  F i g .  3 for  the par t icular  At of each experimental  situation and modified 
by the resu l t s  of F ig .  2 for the particular velocity of the run. 

F r o m  the m i r r o r  c a m e r a  

Toward the end of the test t ime,  i t  will be noticed that the radiation 
f r o m  the standing shock appears  to grow d immer .  
follows. The predominant radiation f r o m  the standing shock, a s  indicated, is  
Bremsstrahlung,  
Calculations of the electron number density behind a standing normal  shock, 
and a shock reflected f rom an  end wall, indicate that while the tempera ture  
does not change ve ry  much, the electron number density i s  lower behind the 

This can  be explained a s  

which var ies  as  the square of the electron number density. 
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conductivity was r a the r  sma l l  (1 5-20 psec)  compared  with the e-folding t imes  
for  a 2 c m  shock detachment distance of 7 = 17. 5 psec.  F o r  these runs ,  the 
four w i r e  assembly shown in F ig .  7 was replaced by a single 3/16-in. d iam-  
e t e r  copper wire.  With the shock tube operating a t  shock velocities of about 
8 mm/psec at an init ial  p r e s s u r e  of 0. 25 mm capacitor bank quar te r  cycle 

shock position was 2cm.  
in  a i r .  
3/16-in. w i r e  and the image converter  had i t s  axis  perpendicular to  both the 
w i r e  and the flow direction. I ts  field of view covered the center  7 c m  of the 
rod,  a s  well  a s  a few c m  ups t r eam and downstream. The timing and velocity 
measu remen t s  for  this run w e r e  obtained from th ree  photomultipliers located 
a t  var ious positions ups t ream of the wire .  

t ime  of 40 psec,  and a cu r ren t  of 2. 8 x 10 5 amps ,  the theoret ical  steady s ta te  
F igure  12 shows the resu l t  of one interesting run 

F o r  this run, the m i r r o r  camera  was aligned along the axis of the 

As in the four previous f igures ,  an  x- t  d iagram could be con- 
s t ruc ted  to  the left of the actual  m i r r o r  c a m e r a  photograph. 
f i r e s ,  a disturbance of some so r t  occurs  and appears  to propagate ups t r eam 
until i t  in te rsec ts  the incident shock. 
s t r e a m  a t  the flow velocity. 
by this disturbance, since most  of the tes t  g a s  pas sed  through the shock be- 
fore  the point where the disturbance in t e r sec t s  the shock. 
approaches the rod, i t  slows down and appears  to give way to a standing MHD- 
supported shock wave. This p rocess  i s  quite a cont ras t  f r o m  the manner  i n  
which the standing shock i s  formed i n  the previously descr ibed  runs  made i n  
the argon-oxygen mixture .  
charge  c rea ted  by the e lec t r ic  field para l le l  with the wire  which, because of 
the relatively high qua r t e r  cycle t ime for these runs had a maximum value 
a lmost  equal to  EU,B. 
ups t r eam on the expanding magnetic field l ines .  

When the bank 

At this point, i t  i s  swept back down- 
The main body of the t e s t  gas  r ema ins  unaffected 

As the disturbance 

The disturbance is  probably an  e lec t rode less  d is -  

The discharge ionized the g a s ,  which then moved 

Also shown in  F i g .  12 a r e  the image converter  pictures  and the 
t i m e s  a t  which they were  taken.  These image conver te r  photographs,  a s  
well  as s imi l a r  photographs taken during the other  runs ,  indicate that the 
shock layer  i s  uniform along the 15 c m  rod to within about 1 o r  2 c m  of the 
shock tube w a l l ,  thus validating a two-dimensional ana lys i s .  

One other aspect of the two-dimensional nature  of the flow dese rves  
mention. The cur ren ts  in  the gas  which flow i n  the shock layer  a r e  supposed 
to c lose on themselves .  
happen, the cur ren ts  must c lose somewhere in  the region of hot gas  surround-  
ing, o r  downstream of the cyl inder .  
c u r r e n t s  a r e  able to c lose,  successful  measu remen t s  i n  the argon-oxygen 
c a s e  were  made of the e lec t r ic  field in the shock l a y e r .  
pulse when the shock a r r ived ,  the value of the e l ec t r i c  field within the shock 
layer  was very  much l e s s  than E U,B. This  indicates that the e l ec t r i c  
f ie ld  was driving a cu r ren t  through the gas  determined by o s ~ U , B  and that 
the res i s tance  of the r e s t  of the circui t  through which the cu r ren t  c losed 
was smal l .  
the incident shock a r r ived  cor responds  to EU,B, and indicates that initially 
no path i s  provided for  the c u r r e n t s  to flow. The t ime requi red  for  this pulse 
to  disappear  i s  the t ime required to se t  up a r e tu rn  path for the gas  cu r ren t s ,  
and cor responds  approximately to the t ime i t  takes  the incident shock to move 
a few cent imeters .  

Since no external  path has been provided for  th i s  to 

In o rde r  to  de te rmine  how well the gas  

Except for  a sma l l  

The value of the sma l l  pulse of e lec t r ic  field measured  when 
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standing shock by a factor of 2 o r  3.  Since, in our experiments ,  the stand- 
ing shock intially moves ups t ream at about the same velocity a s  a shock r e -  
flected f rom an  end wall, i t s  radiation will be grea te r  by a factor  of 2 2  o r  3 2  
while it i s  moving than when i t  stands stationary.  
shock layer  conductivity depends only on collisions between e lec t rons  and oxy- 
gen ions.  
ed analytically, 1 9  resulting i n  an  equation for  conductivity that depends only 
on the temperature  to the three halves power,  and virtually independent of 
e lectron number density. 
number density large enough to produce significant changes i n  radiated light, 
these variations cause little change in  the conductivity since the change i n  
tempera ture  i s  small .  
shock that has  not reached its equilibrium position has  a l so  been observed 
in  the pure aerodynamic case  with no magnetic field. 

Under the same  conditions, 

The Coulomb c r o s s  section for  this type of collision can  be expres s -  

Hence, even though there  i s  a variation i n  e lectron 

This phenomenon of more  radiation f r o m  a standing 

One other unusual phenomenon deserves  mention. It i s  observed 
f r o m  F igs .  8 and 9 ,  for  which the m i r r o r  c a m e r a  was aligned perpendicular 
to the cylinder,  that about 75 p i ec  after the bank f i r e s ,  a wave, which s t a r t s  
f rom behind the cylinder,  moves upstream a t  about 0. 5 mm/psec.  This 
wave i s  probably due to the fact  that the flow above and below the stagnation 
s t reamline par t icular ly  near  the cylinder ends,  pas ses  through a complicated 
shock sys tem which reduces the flow Mach number to a value sufficiently 
smal l  to cause choking. 
4 5 O  to the flow direction, the choking wave does not in te r fe re  with conditions 
at the stagnation point until i t  has  moved out approximately 0 .  7 r No such 
secondary wave is  observed in  the m i r r o r  c a m e r a  photos taken with the c a m e r a  
aligned along the axis of the cylinder, as in  Figs .10 and 11. This i s  consistent 
with the previous arguments  because the field of view of the c a m e r a  is  r e s t r i c t -  
ed to the region very  close to the axis of the flow, o r  the incoming stagnation 
s t reamline,  and this c a m e r a  i s  therefore unable to see anything happening 
above o r  below the cylinder. 

Since the sonic line i s  located at  an  angle of about 

9’ 

The image converter picture of these runs and the t imes a t  which 
they were  taken a r e  a l so  shown in Figs. 10 and 11. The f-number of both 
cameras  was increased by a factor of 10  f rom Fig. 10 to Fig. 11. Thus,  
the image converter photographs of F ig .  10  show a great  deal m o r e  detail 
of the flow, including some indication of a wake behind the cylinder than 
shown in F ig .  11. 
dication of the shock shape. 
with the 4 c m  radius c i rcu lar  gr id  through which the photographs were  taken. 
In the vicinity of the stagnation s t reamline ( t  450) it i s  seen that the shock 
follows magnetic field l ines quite closely a s p r e d i c t e d  by theory. Due to the 
s ize  of the viewing window in the test section (Figs .  6 and 7) ,  no informa- 
tion on shock shape could be obtained in the region beyond 45O of the stagna- 
tion s t reamline.  In Fig. 11, a gradient in light intensity indicating a density 
gradient is  visible along the stagnation s t reamline.  

These image converter photographs a l so  give a good in- 
This may be seen by comparing the wave front 

A s  previously indicated, some ear ly  runs were  made  using a i r  a s  
a tes t  gas. 
sulting in a thinner shock layer (cro).  
requi red  to satisfy the limitation on the Hall parameter  and f r e e - s t r e a m  

This had the advantage of smal le r  density ra t ios  ( E  = 1/7), r e -  
The tes t  t ime a t  the shock velocity 
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S E C r l O N  V I  

COMPARISON WITH THEORY 

Before making any quantitative comparisons between the theory and 
experiments ,  an  es t imate  of the validity of the theoret ical  calculati3ns wil l  
be presented.  
p re s s ion  f o r  the shock stand-off distance, Eq. ( 6 ) ,  i s  only valid when E 
i s  much l e s s  than unity. In the experiments conducted in the argon-oxygen 
mixture ,  however, this quantity is only 0. 7 ,  which i s  hardly small .  In addi- 
tion, the Levy-Petschek theory should not be expected to be any m o r e  a c c u r -  
a te  in describing the MHD-supported shock stand-off dis tance than s imi l a r  
analyses ,  such a s  one presented  by Hayes and Probs te in ,  2 2  a r e  a t  desc r ib -  
ing the corresponding aerodynamic situation. 
sma l l  values of E ,  the theory including only f i r s t  o rde r  t e r m s  in E gives 
values of shock detachment distances on1 6070 a s  la rge  a s  the experimental  
data repor ted  in  Liepmann and Roshko,  ZYwhich a g r e e  well  with our own 
z e r o  magnetic field data.  The re  a re ,  of course ,  numer ica l  calculations f o r  
the aerodynamic case ,  such a s  that of Belotserkovskii ,  Z4  which involve s tep-  
w i se  integration of the flow equation f rom the shock to the body. 
the above considerat ions,  the theoretical  predictions might be in e r r o r  by  
a s  much as a factor  of two under the conditions of the experiment.  

I t  will  be recal led f rom Section I1 that the Levy-Petschek ex- 

In this la t te r  case ,  even a t  

In view of 

F igure  1 3  shows a plot of the shock position data obtained in  the a rgon-  
oxygenmixture ,  a s  a function of current .  
velocit ies between 4. 3 and 6 mm/psec .  
var ious effective single w i r e  cur ren ts  of 4. 0 x lo5  amps ,  a number of runs  
w e r e  made at 3. 3 x 105 amps.  

Runs w e r e  made  a t  var ious shock 
While mos t  of the runs w e r e  made a t  

The data points for this figure a r e  obtained direct ly  f rom the m i r r o r  
c a m e r a  photographs in  the following manner:  
tion was  m e a s u r e d  f r o m  the mirror c a m e r a  film a t  the t ime when the theo- 
r e t i ca l  shock position was  a t  i ts  maximum value, according to F i g .  3. This 
stand-off dis tance was plotted against the instantaneous cu r ren t  flowing a t  
that  t ime.  
because  a t  this t ime,  drs /d t  = 0, and momentar i ly  the shock position i s  a t  a 
s teady state.  A number of curves ,Eq. (6) ,  for the range of shock velocit ies cov- 
e r e d  by the experiment ,  a s  well  a s  the location of the leading edge of the cylin- 
d e r ,  and a n  aerodynamically supported shock a r e  also shown. Regarding the 
l a t t e r ,  the experimental  data reported by Liepmann and Roshko, 2 3  w e r e  used. 

Fo r  every  run,  the shock pos i -  

This par t icu lar  point was chosen to  r ep resen t  the en t i re  run 

In F i g .  14, a l l  of the data have been normalized to a shock velocity 

In this figure, w e  s e e  that the data for shock ve-  
of 5mrn/p s e c  according to the theoretical  var ia t ion of shock position with 
velocity given in F i g .  2. 
loci t ies  below 5. l m m / u s e c  sca t te r  l e s s  than 107' around a mean,  which is 
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almost  coincident with the theoretical  calculation. 
with theory must be interpreted in light of the expected accuracy of the 
theory discussed ear l ie r .  

This good agreement  

At velocities above 5. 2 mm/p sec ,  the shock had moved ups t ream of 
the l imited field of view of the m i r r o r  camera  well  before maximum cur ren t  
was reached. These points were  normalized to maximum cur ren t  by multi-  
plying the measured shock position by the rat io  of the maximum theoret ical  
shock position (Fig .  3 ) to the theoretical  shock position a t  the t ime in  question. 
These data begin to depart  significantly f rom theory. This resu l t ,  although 
expected a t  a slightly higher velocity, i s  in general  agreement  with the fact  
that the f r ee  s t r eam becomes significantly conducting a t  high shock velocit ies,  
a s  indicated in Fig. 2, thus changing the nature  and extent of the interaction. 

F r o m  the data presented, it is difficult to determine the effect of a 
l a rge  Hall parameter  on the shock location because a t  the low velocities r e -  
quired for this to occur (4. 5 mm/p  sec)  the theoretical  shock position i s  close 
to the aerodynamic shock position. 
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SECTION VI1 

CONCLUSIONS 

The results of a shock tube experiment in which the magnetic field 
f rom a straight wire  perpendicular to the flow interacted strongly with a 
hypersonic streaming flow a r e  in  good agreement  with a theory proposed 
by Levy and Petschek. Although their  theory was for  a steady s ta te ,  cal-  
culation of the variation of shock detachment distance with t ime, based on 
a quasi-steady model applied to the time variations of the magnetic field 
used in the experiments,  agreed well with the m i r r o r  camera  data. At 
intermediate shock velocit ies,  comparison of the experimentally measured  
shock position ( a t  a t ime corresponding to the time a t  which the quasi-steady 
theory predicts a maximum detachment distance) differ by l e s s  than 10% 
f r o m  the steady state theoretical  prediction (based on the instantaneous cur -  
rent  flowing at  that t ime).  
the f a c t  that t e rms  of the o r d e r  of 
experiments were performed a t  a value of E = 1/4. 
responding to large f r ee  s t r e a m  conductivities, the experimentally measured  
shock position was considerably l a rge r  than that predi.cted by theory. 
strong conclusions could be drawn concerning the shock position a t  low ve - 
locities where the Hall parameter  becomes significant. 
t e r  and m i r r o r  camera  photographs indicated that the density behind the 
shock wave dropped quickly through the shock layer .  
apparent  for  the experiments performed in a i r ,  due to a sma l l e r  density 
ratio,  and therefore a sma l l e r  shock layer  thickness. 
tu res  showing the curvature  of the shock indicate that i t  follows field lines 
quite closely up to about 450 f rom the stagnation s t reamline.  

This agreement  is surpr is ingly good in view of 
were  ignored in the theory, and the 

At high velocities, c o r -  

No 

Both image conver- 

Th.is was par t icular ly  

Image converter pic- 
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Fig.  1 Schematic drawing of the magnetohydrodynamically-supported 
hypersonic shock layer  ahead of a cur ren t -car ry ing  wire .  The 
flow is conducting only in  the shock layer.  
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Fig .  2 Steady state theoretical predictions of MHD-supported shock 
detachment distance calculated fo r  a i r  and a 50-50 mixture of 
Oxygen and Argon in  the shock tube. 
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F i g .  3 Quasi-steady response of MHD-supported shock to a sinusoi- 
dally varying magnetic field, Eq. (12), for a t  = 20,  40, 60, 
80, 100 ,  1 2 0  p s e c ;  7 = 40 p s e c ;  ci. = 2 x 10 r ad /psec  and 
roo = 5 cm. Dotted portion of curve represents  region in which 
aerodynamic forces ,  which a r e  not included in the calculations, 
a r e  l a rge r  than MHD forces.  
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P,=.25mm U s = 8 . 8  m m / p  sec 

IMAGE CONVERTOR 

r INTERFACE 

PHOTOMULTI PLI E R 

TARRIVAL OF SHOCK FRONT 

TEST TIME: t =  15psec 

T I  M E p  sec - 
F i g .  4 Instantaneous photographs and photomultiplier oscil lograms of 

the radiation in the visible range of the spectrum from shock- 
heated a i r  and dr iver  gas. 
in the photograph, taken a t  10 /.i sec  intervals  by an image con- 
ve r t e r  (STL Model C). 

There  a r e  three . 05 p sec  exposures  
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us = 5.5 mm/psec, P,=lmm 

TIME- 4 b 2 0 p s e c  

us= 4.7 mm /p  sec, P,= Imm 
SHOCK 

.c 
INTERFACE 

! - - T E T T W E ~  / AR R I VA L 
\ 

F i g .  5 Photomultiplier oscil lograms of radiation in  the visible range of 
the spectrum f rom shock-heated mixtures  of 5070 argon and 5070 
oxygen. 
Runge radiation f r o m  molecular oxygen, while a t  higher velocity 
Bremsstrahlung radiation dominates due to the higher e lectron 
concentration. 

Radiation f r o m  tes t  gas fo r  low velocity runs is Schumann 
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Fig. 6 Schematic diagram of experimental  equipment used to study MHD- 
supported shock layer.  Photographs of the flow luminosity were 
taken with a m i r r o r  camera and an image convertor,  viewing both 
paral le l  with the cylinder, and perpendicular to both the cylinder 
and the flow direction. 

T E S T  SECTION 
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BANK 

F i g .  7 Photograph of a model of the tes t  section a s  installed in the shock 
tube. 
close to each other across  a diameter  of the shock tube. 

Photo shows the manner in which the four wi res  a r e  inser ted 
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F i g .  8 Mi r ro r  camera  photograph of run in  5070 oxygen, 5070 argon tes t  
gas at 1 mm Hg initial p re s su re  and 5. 0 mm/ /A sec  shock speed. 
Mi r ro r  camera  aligned perpendicular to cylinder and flow d i rec-  
tion. White theory line drawn f r o m  Eq. (12) .  Dotted portion of 
line represents  the region i n  which aerodynamic forces ,  which 
a r e  not included in the calculation, a r e  l a r g e r  than MHD fo rces .  
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M i r r o r  c a m e r a  photograph of run in  5070 oxygen, 50% argon tes t  
gas a t  1 m m  Hg init ial  p ressure  and 4. 9 mm/ p sec  shock velocity. 
M i r r o r  c a m e r a  aligned perpendicular to  cylinder and flow d i r ec -  
tion. 
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Fig.  10 Mi r ro r  camera and image converter  (STL Model C)  photograph 
of run in  5070 oxygen, 50% argon t e s t  gas  a t  1 mm Hg init ial  p r e s -  
sure ,  and 5. 0 m m / p  sec  shock velocity. Both cameras  aligned 
along the ax is  of the cylinder. 
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F i g .  l l  M i r r o r  c a m e r a  and image converter  (STL Model C )  photograph 
of run in  5070 oxy en, 5070 argon tes t  gas at 1 mm Hg init ial  p r e s -  
su re  and 4. 8 m m  p s e c  shock velocity. 
along the axis  of the cylinder. 

Both c a m e r a s  aligned 7 
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Fig. 12 Mir ror  camera  and image converter  (STL Model C)  photo raphs 
of run in  a i r  a t  0 . 2 5  mm Hg init ial  p re s su re  and 8. 0 m m  B p s e c  
shock velocity. M i r r o r  camera  aligned along axis  of wi re  and 
image converter  perpendicular to both wire  and flow direction. 
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F i g .  1 3  Comparison of theoretical predictions with experimentally 
m e a s u r e d  shock position in  5070 argon,  5070 oxygen tes t  g a s .  
Data a r e  plotted directly as  r e a d  f r o m  m i r r o r  c a m e r a  photo- 
graphs without any scaling. 
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F i g .  14 Comparison of theoret ical  predictions with normalized experi-  

A l l  m i r r o r  c a m e r a  data a r e  normalized to a shock velo- 
mental  data on shock position in 5070 argon,  5070 oxygen tes t  
gas. 
city of 5 mm/psec .  
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